762 research outputs found

    An Implementation-theoretic Approach to Non-cooperative Foundations

    Get PDF
    This paper reconsiders the literature on non-cooperative foundations of cooperative solutions. The goal of non-cooperative foundations is to provide credible non-cooperative models of negotiation and coalition formation whose equilibrium outcomes agree with a given cooperative solution. Here we argue that this goal is best achieved by explicitly modeling the physical environment and individual preferences, and constructing game forms {independent of preferences} to implement the cooperative solution. In addition, the game form should reflect salient aspects of negotiation. We propose a general model (called a {strategic environment}) of the physical environment; we characterize the coalitional functions arising from strategic environments; we demonstrate our approach for the case of the core; and we provide conditions under which core payoffs correspond to payoffs from core outcomes.Non-cooperative foundations, Implementation

    Parallel Reinforcement Learning for Traffic Signal Control

    Get PDF
    AbstractDeveloping Adaptive Traffic Signal Control strategies for efficient urban traffic management is a challenging problem, which is not easily solved. Reinforcement Learning (RL) has been shown to be a promising approach when applied to traffic signal control (TSC) problems. When using RL agents for TSC, difficulties may arise with respect to convergence times and performance. This is especially pronounced on complex intersections with many different phases, due to the increased size of the state action space. Parallel Learning is an emerging technique in RL literature, which allows several learning agents to pool their experiences while learning concurrently on the same problem. Here we present an extension to a leading published work on RL for TSC, which leverages the benefits of Parallel Learning to increase exploration and reduce delay times and queue lengths

    Multi-Agent Credit Assignment in Stochastic Resource Management Games

    Get PDF
    Multi-Agent Systems (MAS) are a form of distributed intelligence, where multiple autonomous agents act in a common environment. Numerous complex, real world systems have been successfully optimised using Multi-Agent Reinforcement Learning (MARL) in conjunction with the MAS framework. In MARL agents learn by maximising a scalar reward signal from the environment, and thus the design of the reward function directly affects the policies learned. In this work, we address the issue of appropriate multi-agent credit assignment in stochastic resource management games. We propose two new Stochastic Games to serve as testbeds for MARL research into resource management problems: the Tragic Commons Domain and the Shepherd Problem Domain. Our empirical work evaluates the performance of two commonly used reward shaping techniques: Potential-Based Reward Shaping and difference rewards. Experimental results demonstrate that systems using appropriate reward shaping techniques for multi-agent credit assignment can achieve near optimal performance in stochastic resource management games, outperforming systems learning using unshaped local or global evaluations. We also present the first empirical investigations into the effect of expressing the same heuristic knowledge in state- or action-based formats, therefore developing insights into the design of multi-agent potential functions that will inform future work

    Policy Invariance under Reward Transformations for Multi-Objective Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a powerful and well-studied Machine Learning paradigm, where an agent learns to improve its performance in an environment by maximising a reward signal. In multi-objective Reinforcement Learning (MORL) the reward signal is a vector, where each component represents the performance on a different objective. Reward shaping is a well-established family of techniques that have been successfully used to improve the performance and learning speed of RL agents in single-objective problems. The basic premise of reward shaping is to add an additional shaping reward to the reward naturally received from the environment, to incorporate domain knowledge and guide an agent’s exploration. Potential-Based Reward Shaping (PBRS) is a specific form of reward shaping that offers additional guarantees. In this paper, we extend the theoretical guarantees of PBRS to MORL problems. Specifically, we provide theoretical proof that PBRS does not alter the true Pareto front in both single- and multi-agent MORL. We also contribute the first published empirical studies of the effect of PBRS in single- and multi-agent MORL problems

    Influenzanet: Citizens Among 10 Countries Collaborating to Monitor Influenza in Europe.

    Get PDF
    BACKGROUND: The wide availability of the Internet and the growth of digital communication technologies have become an important tool for epidemiological studies and health surveillance. Influenzanet is a participatory surveillance system monitoring the incidence of influenza-like illness (ILI) in Europe since 2003. It is based on data provided by volunteers who self-report their symptoms via the Internet throughout the influenza season and currently involves 10 countries. OBJECTIVE: In this paper, we describe the Influenzanet system and provide an overview of results from several analyses that have been performed with the collected data, which include participant representativeness analyses, data validation (comparing ILI incidence rates between Influenzanet and sentinel medical practice networks), identification of ILI risk factors, and influenza vaccine effectiveness (VE) studies previously published. Additionally, we present new VE analyses for the Netherlands, stratified by age and chronic illness and offer suggestions for further work and considerations on the continuity and sustainability of the participatory system. METHODS: Influenzanet comprises country-specific websites where residents can register to become volunteers to support influenza surveillance and have access to influenza-related information. Participants are recruited through different communication channels. Following registration, volunteers submit an intake questionnaire with their postal code and sociodemographic and medical characteristics, after which they are invited to report their symptoms via a weekly electronic newsletter reminder. Several thousands of participants have been engaged yearly in Influenzanet, with over 36,000 volunteers in the 2015-16 season alone. RESULTS: In summary, for some traits and in some countries (eg, influenza vaccination rates in the Netherlands), Influenzanet participants were representative of the general population. However, for other traits, they were not (eg, participants underrepresent the youngest and oldest age groups in 7 countries). The incidence of ILI in Influenzanet was found to be closely correlated although quantitatively higher than that obtained by the sentinel medical practice networks. Various risk factors for acquiring an ILI infection were identified. The VE studies performed with Influenzanet data suggest that this surveillance system could develop into a complementary tool to measure the effectiveness of the influenza vaccine, eventually in real time. CONCLUSIONS: Results from these analyses illustrate that Influenzanet has developed into a fast and flexible monitoring system that can complement the traditional influenza surveillance performed by sentinel medical practices. The uniformity of Influenzanet allows for direct comparison of ILI rates between countries. It also has the important advantage of yielding individual data, which can be used to identify risk factors. The way in which the Influenzanet system is constructed allows the collection of data that could be extended beyond those of ILI cases to monitor pandemic influenza and other common or emerging diseases

    Unsupervised extraction of epidemic syndromes from participatory influenza surveillance self-reported symptoms

    Get PDF
    Seasonal influenza surveillance is usually carried out by sentinel general practitioners (GPs) who compile weekly reports based on the number of influenza-like illness (ILI) clinical cases observed among visited patients. This traditional practice for surveillance generally presents several issues, such as a delay of one week or more in releasing reports, population biases in the health-seeking behaviour, and the lack of a common definition of ILI case. On the other hand, the availability of novel data streams has recently led to the emergence of non-traditional approaches for disease surveillance that can alleviate these issues. In Europe, a participatory web-based surveillance system called Influenzanet represents a powerful tool for monitoring seasonal influenza epidemics thanks to aid of self-selected volunteers from the general population who monitor and report their health status through Internet-based surveys, thus allowing a real-time estimate of the level of influenza circulating in the population. In this work, we propose an unsupervised probabilistic framework that combines time series analysis of self-reported symptoms collected by the Influenzanet platforms and performs an algorithmic detection of groups of symptoms, called syndromes. The aim of this study is to show that participatory web-based surveillance systems are capable of detecting the temporal trends of influenza-like illness even without relying on a specific case definition. The methodology was applied to data collected by Influenzanet platforms over the course of six influenza seasons, from 2011-2012 to 2016-2017, with an average of 34, 000 participants per season. Results show that our framework is capable of selecting temporal trends of syndromes that closely follow the ILI incidence rates reported by the traditional surveillance systems in the various countries (Pearson correlations ranging from 0.69 for Italy to 0.88 for the Netherlands, with the sole exception of Ireland with a correlation of 0.38). The proposed framework was able to forecast quite accurately the ILI trend of the forthcoming influenza season (2016-2017) based only on the available information of the previous years (2011-2016). Furthermore, to broaden the scope of our approach, we applied it both in a forecasting fashion to predict the ILI trend of the 2016-2017 influenza season (Pearson correlations ranging from 0.60 for Ireland and UK, and 0.85 for the Netherlands) and also to detect gastrointestinal syndrome in France (Pearson correlation of 0.66). The final result is a near-real-time flexible surveillance framework not constrained by any specific case definition and capable of capturing the heterogeneity in symptoms circulation during influenza epidemics in the various European countries. Author summary This study suggests how web-based surveillance data can provide an epidemiological signal capable of detecting the temporal trends of influenza-like illness without relying on a specific case definition. The proposed framework was able to forecast quite accurately the ILI trend of the forthcoming influenza season based only on the available information of the previous years. Moreover, to broaden the scope of our approach, we applied it to the detection of gastrointestinal syndromes. We evaluated the approach against the traditional surveillance data and despite the limited amount of data, the gastrointestinal trend was successfully detected. The result is a near-real-time flexible surveillance and prediction tool that is not constrained by any disease case definition

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore